Cpd. Caled. Obsd. Carbon disulfide			Cpd. Caled. Obsd. Cyclohexane			Table II (Continued)						Cpd.	Calcd Eth	Obsd.	Cpd. Caled. Obsd. Methanol					
			Cpd.	Calcd, Hexane	Obsd.	Cpd.	Calcd Pyrid	Obsd.												
1	427	428				13	478	475^{d}	5	419	422^{6}	10	444	443	13	473	$473{ }^{\text {d }}$	5	417	$420^{\text {b }}$
2	427	424	15	510	$503{ }^{\text {d }}$	8	426	427	13	490	$489{ }^{\text {d }}$	Benzene			16a	447	457			
3	427	423	Chloroform			15	501.5	$500{ }^{\text {d }}$	16 a	468	477				16b	457	457			
4	451	451				18	448	449	16 b	477	477	4	434	434	17a	447	457			
$\overline{5}$	451	449	4	431	433	19	447	449	17a	468	477	5	434	430	17b	457	457			
6	451	449	5	431	430	Alcohol			17b	477	477	8	442	440	Petroleum ether					
7	453	451	6	431	430				Light ligroin			9	442	439						
8	458.5	459	8	438	438	3	398.5	403				10	442	439	4	420	422			
9	$458 . \overline{3}$	459	9	438	438	5	421	421	5	421	$422^{\text {b }}$	13	487	$486{ }^{\text {d }}$	5	420	421			
10	458.5	459	10	438	437	6	421	421	16 a	452	460	16 a	464	472	6	420	421			
12	504	504	12	483.5	485	9	428.5	430	16 b	460	460	16b	474	472	10	427	426			
13	504	$502{ }^{\text {d }}$	13	483.5	$488{ }^{\text {d }}$	10	428.5	427	17a	452	459	17a	464	472	12	471	475			
15	538	$539{ }^{\text {d }}$	15	515	$516^{\text {d }}$	11	362	$370^{\text {c }}$	17 b	460	459	17b	474	472	13	471	$472^{\text {d }}$			
16 a	483	494	16 a	462	474	13	473	$472^{\text {d }}$	18	451	452	21	461	460						
16 b	491	494	16b	471	474	14	352	352	19	451	451.5									
17 a	483	492	17 a	462	472	18	450	450	21	448	448									
17b	494	492	17b	471	474	20	350	347												
18	481	479	18	460.5	460															
19	481	479	21	457	459															
21	478	478																		

${ }^{\text {a }}$ Experimental data: P. Karrer and E. Jucker, "Carotenoids,"' Elsevier Publishing Co., Inc., Houston, Texas, 1950, unless otherwise indicated. ${ }^{b}$ R. Kuhn and H. Brockmann, Z. physiol. Chem., 213, 192 (1932). © P. Karrer and C. H. Eugster. Helv. Chim. Acta, 34, 1805 (1951). d P. Karrer and E. Leumann, ibid., 34, 445 (1951). ${ }^{\text {e B. C. L. Weedon and R. J. }}$ Woods, J. Chem. Soc., 2687 (1951).
not be discussed at present, as there are no other data.
$N_{r \bar{s}}$ was computed from the observed values for $\lambda_{\text {max }}$ of compounds 18 and 19 (Table II); the value ($N_{\mathrm{r} \overline{3}}=-0.9$) is very close to that of $N_{\mathrm{r} 1}$ as expected. However, in the case of compounds 16 and 17, better agreement was obtained with $N_{\text {r }}=$ -0.3; therefore the structural formula of either dihydrorhodoxanthin (Table II, 18) or aphanin (Table II, 16), probably the latter, is doubtful.

In the case of the oxide substituents of caro-
tenoids, the α, β-epoxyalkyl group exerts a rather large bathochromic effect, but the effect of the furanoid oxide group (FO), computed from the observed values for $\lambda_{\max }$ of compounds 1-10 (Table II), is almost zero ($N_{\text {FO }}=+0.02$).

The ring of dihydro-bis-anhydro- β-carotene (r6, Table I) exerts a hypsochromic effect ($N_{\mathrm{r} \hat{6}}=$ -0.4) quite unexpectedly in view of its exocyclic ethylene structure.

Osaka, Japan
[Contribution from Institute of Polytechnics, Osaka City University]

Absorption Spectra and Chemical Structure. IV. Unsaturated Aldehydes, Ketones and Carboxylic Acids

By Kenzô Hirayama
Received July 16, 1953

The wave length of the first absorption maximum of a conjugated system, with either a carbonyl or carboxyl group at the α-position or at both the α - and ω-positions, also can be expressed by the functional relationship $\left(\lambda_{\max }\right)^{2}=A-B C^{N}$.

The following equations, which are applicable to polyene derivatives, were discussed in the appendix to Part I.

```
\(\begin{aligned} & \text { For polyenes with no } \\ & \left.\begin{array}{l}\text { chromophoric } \\ \text { substituents }\end{array}\right\}\left(\lambda_{\max }\right)^{2}\end{aligned}=a+B\left(1-C^{N}\right)\)
For polyenes with
    the same \(\quad\left(\lambda_{\text {max }}\right)^{2}=\)
    chromophoric \(\quad a^{\prime \prime}+b_{\text {het }}+B C_{\text {het }}{ }^{2}\left(1-C^{N}\right)\)
    substituents in \(\alpha-=A^{\prime \prime}-B^{\prime \prime} / C^{N}\)
    and \(\omega\)-positions
```

Similarly for conjugated systems with only one heterochromophore which is in the α-position, the following equations may be applied

$$
\begin{align*}
\left(\lambda_{\max }\right)^{2} & =a^{\prime}+\frac{b_{\text {het }}}{2}+B C_{\mathrm{hat}^{\prime}\left(1-C^{N}\right)} \tag{5}\\
& =A^{\prime}-B^{\prime} C^{N} \tag{6}
\end{align*}
$$

where a^{\prime} is the intercept value when $N=0$, and
B and C have the meanings given in previous cases; the value for C used in 2 and 4 should be satisfactory for 6 .

For conjugated polyene α-aldehydes, A^{\prime} and B^{\prime} were computed from the observed values for $\lambda_{\text {max }}$ in petroleum ether ${ }^{1}$ with $C=0.920$ and substituted in 6 to give

$$
\left(\lambda_{\text {max }}^{\text {pai. }}\right)^{2}=\left(39.78-39.33 \times 0.920 \cdot v^{v}\right) \times 10^{4} \mathrm{~m} \mu^{2}
$$

The values calculated by 7 (Table I, 1-9) show good agreement with the observed values.

Ketones, which can be considered as derivatives of aldehydes in which the hydrogen of the - CHO
(1) As shown in part II. the $\lambda_{\max }$ of polyenes in hexane, petroleum ether and light ligroin vary only slightly with the solvent; therefore in this part, the same value for B^{\prime} is used for the calculation of the $\lambda_{\text {max }}$ in these three solvents. Consequently, in many cases the observed values in light ligroin and in hexane are a little longer and a little shorter, respectively, than the corresponding calculated values.

Table I
Absorption Maxima of Polyenes with One Carbonyi or Carboxyl Substituent in o-Position

No.	Compound					N	Solv, b	Obsd ${ }^{\text {c }}$ c	Culed.
1	2,4-Hexadienal	2	1	0	0	2.1	Hex.	$\underline{29} 2^{\text {d }}$	260
2	2,4,6-Octatrienal	3	1	0	0	3.1	Hex.	$306{ }^{1 /}$	307
3	Retinene ${ }_{1}$	5	5	1	0	4.7	Hex.	365\%	36:3.5
4	α-Apo-2-carotenal	8	5	0	0	8.5	P.e.	$450{ }^{\circ}$	452
5	α-Citraurin	8	5	0	0	8.5	Pe.	450	452
6	β-Apo-2-carotenal	9	7	1	0	8.9	Pe.	4.51	45%
7	3-Citraurin	9	7	1	0	8.8	Hex.	+5\%	$45!$
8	Apo-3-lycopenal	9	fi	1	$1)$	9.6	I. 1.	47%	4.15
9	Apo-2-lycopenal	10	6	0	0	10.6	T..6.	490.5	385
10	3,5-Heptadien-2-onre	2	1	0	0	2.1	Hex.	$264{ }^{\text {d }}$	290
11	Dihydroxysemi- β-carotenone	9	5	0	0	9.5	Pe.	488	469
12	t-Butyl β-apo-1-carotenyl ketone	10	7	1	0	9.9	P.e.	473	47.4
13	Capsanthin	10	7	1	()	9.9	I. . 1	495	474
14	Capsanthin dipalmitate	10	7	1	0^{1}	0.9	P.e.	47:3	474
15	Semi- β-carotenone	10	7	1	0	9.8	I.c.	480	474
16	2,4,6-Octatrien-1-oic acid	3	1	0	1.	2.8	Hex.	302^{2}	294
17	3-Methyl-2,4,6-octatrien-1-oic acid	3	2	0	1	2.9	Hex.	$296{ }^{\text {d }}$	298
18	2,4,6,8-Decatetraen-1-oic acid	4	1	0	1	3.8	Mex.	3.330^{4}	$3: 34$
19	Methylazafrin	7	4	0	1	7.1	I. 1.	422.5	424
20	Torularhodin	12	8	1	1	11.7	1.1.	501	499.5
21	Torularhodin methyl ester	12	8	1	1	11.7	L. 1.	498	499.5

${ }^{a} R=$ number of alkyl substituents; $r_{1}=$ number of conjugated rings r_{1} (see Table I, part III); Ac number of carboxyl groups in α-position. ${ }^{b}$ Hex. $=$ hexane; p.e. $=$ petroleum ether; $1.1 .=$ light ligroin. ${ }^{\text {c }}$ Experimental data, unless otherwise indicated, from P. Karrer and E. Jucker, "Carotenoids," Elsevier Publishing Co., Inc., Houston, Texas, 195). ${ }^{d}$ K. Dimroth, Angew. Chem., 52, 545 (1939). © L. F. Fieser, J. Org. Chem., 15, 930 (1950) .
chromophore is substituted by an alkyl auxochrome, show a slight bathochromic effect in petroleum ether; however this effect is negligible in comparison to that of the ethylene chromophore (about 4%), and equation 7 can be used without modification for α-keto conjugated polyenes. The examples given in Table I ($10-15$) show good agreement.

On the other hand, carboxylic acids, in which the hydrogen of the - CHO chromophore is replaced by an -OH auxochrome, show a marked hypsochromic effect in petroleum ether, about 30% of the bathochromic effect of the ethylene chromophore. Therefore, the $\lambda_{\text {max }}$ of conjugated polyene α-carboxylic acids may be calculated by 7 if $N_{\text {acid }}=$ -0.3 is taken into consideration ${ }^{2}$; actually the calculated values in Table I (16-21) agree well with the observed. ${ }^{3}$

Now, $a, a^{\prime \prime}$ and a^{\prime} in equations 1,3 and 5 , respectively, are compensatory terms, representing partial effects which do not change in progression, and there exists an approximate relationship between them, $2 a^{\prime}=a+a^{\prime \prime}$. Thus

$$
\begin{equation*}
2\left(a^{\prime}+b_{\mathrm{het}} / 2\right)=a+\left(a^{\prime \prime}+b_{\mathrm{het}}\right) \tag{8}
\end{equation*}
$$

and for polyene α, ω-dialdehydes

$$
a^{\prime \prime}+b_{\text {het }}=3.02
$$

which is obtained by substituting $a=-2.12$ found for polyenes and $a^{\prime}+b_{\text {het }} / 2=0.45$ for polyene- α-aldehydes (see equation 7) in equation 8 . From these data and the observed values, the
(2) $-\mathrm{CHO} \rightarrow-\mathrm{COR}$ or -COOH cannot be regarded as simple auxochromic substitution, such as $=\mathrm{CH}-\rightarrow=\mathrm{CR}-$, because in the former auxochromic substitution occurs not in the homochromophore, but in the heterochromophore. As there are insufficient data for the exact computation of parameters A^{\prime} and B^{\prime} (or $A^{\prime \prime}$ and $B^{\prime \prime}$), we assume that the homoconjugation method is applicable to these cases and that the change occurs in N.
(3) The method of calculation of N and $\lambda_{\max }$ is illustrated in part II.

Table II

Absorption Maxima of Polyenes with Carbonyl or Carboxyl Groups at α - and ω-Positions

Subst. and structure ${ }^{\text {a }}$			N	λ max, $\mathrm{m} \mu$ Solv.b Obsd. ${ }^{\text {c }}$ Calcd.		
8	4	0	8.4	P.e.	452	453
9	4	0	9.4	P.e.	468	468
7	3	0	7,3	Hex.	431	434
7	3	0	7.3	Hex.	433	434
7	3	0	7.3	Hex.	431	434
8	4	0	8.4	P.e.	452	453
7	3	1	7.0	P.e.	424	428
8	4	1	8.1	P.e.	445	448
9	4	0	9.4	Hex.	466	467.5
9	4	0	9.4	P.e.	464	467.5
9	4	0	9.4	L.1.	474	467.5
9	4	0	9.4	Hex.	474	467.5
9	4	0	9.4	Hex.	472	467.5
7	3	1	7.0	L.1.	429	430
7	3	1	7.0	L.1.	429	430
7	4	2	6.8	L.1.	424.5	424.5
7	4	2	6.8	L.l.	424.5	424.5
9	4	2	8.8	Hex.	450	459

${ }^{n}$ See a, Table I. ${ }^{b}$ See b, Table I. ${ }^{\circ}$ Experimental data from P. Karrer and E. Jucker, "Carotenoids,'" Elsevier Publishing Co., Inc., Houston, Texas, 1950.
parameter $B^{\prime \prime}$ was calculated to be 34.67 . Thus
$\left(\lambda_{m a x}^{\text {p.e. }}\right)^{2}=\left(37.69-34.67 \times 0.920^{N}\right) \times 10^{4} \mathrm{~m} \mu^{2} \quad$ (9)
is the equation for polyene α, ω-dialdehydes (Table II, 1 and 2); the same equation is also applicable to α-keto- ω-aldehydes (II, 3-6) and to α, ω-diketones (II, 9-13). Equation 9 also can be used for α-aldehyde- ω-carboxylic acids (II, 7 and 8), α -keto- ω-carboxylic acids (II, 14 and 15) and α, ω dicarboxylic acid (II, $16-18$), with $N_{\text {acid }}=-0.3$ as previously determined.

Osaka, Japan

