									(00,000								
Cpd.	Caled.	Obsd.	Cpd.	Calcd.	Obsd.	Cpd.	Calcd.	Obsd.	Cpd.	Calcd.	Obsd.	Cpd.	Calcd.	Obsd.	Cpd.	Calcd.	Obsd.
Carbon disulfide		Cyclohexane			Hexane			Pyridine		Ether				Methanol			
1	427	428	13	478	475^d	5	419	422^{b}	10	444	443	13	473	473 ^d	5	417	420^{b}
2	427	424	15	510	503ª	8	426	427	13	490	489 ^d		Dennen	•	16a	447	457
3	427	423	C1.1		15	501.5	500 ^d	16a	468	477		Бепzеп	e	16b	457	457	
4	451	451		Calorolor	ш	18	448	449	16b	477	477	4	434	434	17a	447	457
ā	451	449	4	431	433	19	447	449	17a	468	477	5	434	430	17b	457	457
6	451	449	5	431	430				17b	477	477	8	442	440			
7	453	451	6	431	430		Alcoho	1	-			9	442	439	Pet	roleum	ether
8	458.5	459	8	438	438	3	398.5	403	L	ight ligt	oin	10	442	439	4	420	422
9	458.5	459	9	438	438	5	421	421	5	421	422^{b}	13	487	486 ^d	5	420	421
10	458.5	459	10	438	437	6	421	421	16a	452	460	16a	464	472	6	420	421
12	504	504	12	483.5	485	9	428.5	430	16b	460	460	16b	474	472	10	427	426
13	504	502ª	13	483.5	488^d	10	428.5	427	17a	452	459	17a	464	472	12	471	475
15	538	539 ^d	15	515	516 ^d	11	362	370°	17b	460	459	17b	474	472	13	471	472ª
16a	483	494	16a	462	474	13	473	472 ^d	18	451	452	21	461	460			
16h	491	494	16b	471	474	14	352	352	19	451	451.5						
179	483	492	17a	462	472	18	450	450	21	448	448						
176	404	492	17b	471	474	20	350	347									
19	481	479	18	460.5	460												
10	491	470	21	457	459												
19	470	170															
∠1	410	±/0															

TARTE II (Continued)

^a Experimental data: P. Karrer and E. Jucker, "Carotenoids," Elsevier Publishing Co., Inc., Houston, Texas, 1950, unless otherwise indicated. ^b R. Kuhn and H. Brockmann, Z. physiol. Chem., 213, 192 (1932). ^c P. Karrer and C. H. Eug-ster, Helv. Chim. Acta, 34, 1805 (1951). ^d P. Karrer and E. Leumann, *ibid.*, 34, 445 (1951). ^c B. C. L. Weedon and R. J. Woods, J. Chem. Soc., 2687 (1951).

not be discussed at present, as there are no other data.

 N_{r5} was computed from the observed values for λ_{max} of compounds 18 and 19 (Table II); the value $(N_{r5} = -0.9)$ is very close to that of N_{r1} as expected. However, in the case of compounds 16 and 17, better agreement was obtained with N_{r5} = -0.3; therefore the structural formula of either dihydrorhodoxanthin (Table II, 18) or aphanin (Table II, 16), probably the latter, is doubtful.

tenoids, the α,β -epoxyalkyl group exerts a rather large bathochromic effect, but the effect of the furanoid oxide group (FO), computed from the observed values for λ_{max} of compounds 1–10 (Table II), is almost zero $(N_{\rm FO} = +0.02)$.

The ring of dihydro-bis-anhydro- β -carotene (r6, Table I) exerts a hypsochromic effect (N_{r6} = -0.4) quite unexpectedly in view of its exocyclic ethylene structure.

In the case of the oxide substituents of caro-

Osaka, Japan

[CONTRIBUTION FROM INSTITUTE OF POLYTECHNICS, OSAKA CITY UNIVERSITY]

Absorption Spectra and Chemical Structure. IV. Unsaturated Aldehydes, Ketones and Carboxylic Acids

By Kenzô Hirayama

RECEIVED JULY 16, 1953

The wave length of the first absorption maximum of a conjugated system, with either a carbonyl or carboxyl group at the α -position or at both the α - and ω -positions, also can be expressed by the functional relationship $(\lambda_{max})^2 = A - BC$

The following equations, which are applicable to polyene derivatives, were discussed in the appendix to Part I.

For polyenes with no
chromophoric
substituents
$$\begin{pmatrix} \lambda_{max} \end{pmatrix}^2 = a + B(1 - C^N)$$
 (1)
 $= A - BC^N$ (2)
For polyenes with

the same chromophoric sub

the same
chromophoric
substituents in
$$\alpha$$
-
and ω -positions
 $(\lambda_{max})^2 = a'' + BC_{het}^2(1 - C^N)$ (3)
 $= A'' - B''/C^N$ (4)

Similarly for conjugated systems with only one heterochromophore which is in the α -position, the following equations may be applied

$$(\lambda_{\max})^2 = a' + \frac{b_{het}}{2} + BC'_{het}^2(1 - C^N)$$
(5)
= $A' - B'C^N$ (6)

where a' is the intercept value when N = 0, and

B and C have the meanings given in previous cases; the value for C used in 2 and 4 should be satisfactory for 6.

For conjugated polyene α -aldehydes, A' and B'were computed from the observed values for λ_{max} in petroleum ether¹ with C = 0.920 and substituted in 6 to give

$$(\lambda_{\text{max}}^{\text{p.e.}})^2 = (39.78 - 39.33 \times 0.920^{\text{N}}) \times 10^4 \text{ m}\mu^2$$
 (7)

The values calculated by 7 (Table I, 1-9) show good agreement with the observed values.

Ketones, which can be considered as derivatives of aldehydes in which the hydrogen of the -CHO

(1) As shown in part II, the λ_{max} of polyenes in hexane, petroleum ether and light ligroin vary only slightly with the solvent; therefore in this part, the same value for B' is used for the calculation of the λ_{max} in these three solvents. Consequently, in many cases the observed values in light ligroin and in hexane are a little longer and a little shorter, respectively, than the corresponding calculated values.

ABSORPTION MAXIMA OF POLYENES WITH ONE CARBONYL OR CARBOXYL SUBSTITUENT IN *α*-POSITION

			Subst. and structure ^a					$\lambda \max, m\mu$		
No.	Compound	n	R	r 1	Ac	N	Solv.b	Obsd. °	Caled.	
1	2,4-Hexadienal	2	1	0	0	2.1	Hex.	262ª	260	
2	2,4,6-Octatrienal	3	1	0	- 0	3.1	Hex.	306"	307	
3	Retinene	ō	5	1	0	4.7	Hex.	365″	363.5	
4	α -Apo-2-carotenal	8	5	0	0	8.5	P.e.	450^{e}	452	
5	α -Citraurin	8	5	0	0	8.5	P.e.	450	452	
6	β-Apo-2-carotenal	9	7	1	0	8.9	P.e.	454	459	
7	β-Citraurin	9	7	1	0	8.9	Hex.	458	459	
8	Apo-3-lycopenal	9	6	()	0	9. ti	L.1.	473	470	
9	Apo-2-lycopenal	10	6	0	0	10.6	T.1.	490.5	385	
10	3,5-Heptadien-2-one	2	1	0	0	2.1	Hex.	264 ^d	260	
11	Dihydroxysemi-β-carotenone	9	5	0	0	9.5	Рe.	468	469	
12	<i>t</i> -Butyl β -apo-1-carotenyl ketone	10	7	1	0	9.9	P.e.	473	474	
13	Capsanthin	10	7	1	0	9.9	1I.	475	474	
14	Capsanthin dipalmitate	10	7	1	0	9.9	P.e.	473	474	
15	Semi- <i>β</i> -carotenone	10	7	1	0	9.9	P.e.	470	474	
16	2,4,6-Octatrien-1-oic acid	3	1	0	1	2.8	Hex.	302^{d}	<u>294</u>	
17	3-Methyl-2,4,6-octatrien-1-oic acid	3	2	0	1	2.9	Hex.	296^{d}	298	
18	2,4,6,8-Decatetraen-1-oic acid	4	1	0	1	3.8	Hex.	330 ⁴	334	
19	Methylazafrin	7	4	0	1	7.1	L.I.	422.5	424	
20	Torularhodin	12	8	1	1	11.7	L.1,	501	499.5	
21	Torularhodin methyl ester	12	8	1	1	11.7	L.1.	498	499.5	

^a R = number of alkyl substituents; r_1 = number of conjugated rings r_1 (see Table I, part III); Ac = number of carboxyl groups in α -position. ^b Hex. = hexane; p.e. = petroleum ether; 1.1. = light ligroin. ^c Experimental data, unless otherwise indicated, from P. Karrer and E. Jucker. "Carotenoids," Elsevier Publishing Co., Inc., Houston, Texas, 1950. ^d K. Dimroth, Angew. Chem., 52, 545 (1939). ^e L. F. Fieser, J. Org. Chem., 15, 930 (1950).

chromophore is substituted by an alkyl auxochrome, show a slight bathochromic effect in petroleum ether; however this effect is negligible in comparison to that of the ethylene chromophore (about 4%), and equation 7 can be used without modification for α -keto conjugated polyenes. The examples given in Table I (10–15) show good agreement.

On the other hand, carboxylic acids, in which the hydrogen of the -CHO chromophore is replaced by an -OH auxochrome, show a marked hypsochromic effect in petroleum ether, about 30% of the bathochromic effect of the ethylene chromophore. Therefore, the λ_{max} of conjugated polyene α -carboxylic acids may be calculated by 7 if $N_{acid} = -0.3$ is taken into consideration²; actually the calculated values in Table I (16-21) agree well with the observed.³

Now, a, a'' and a' in equations 1, 3 and 5, respectively, are compensatory terms, representing partial effects which do not change in progression, and there exists an approximate relationship between them, 2a' = a + a''. Thus

$$2(a' + b_{\rm het}/2) = a + (a'' + b_{\rm het})$$
(8)

and for polyene α, ω -dialdehydes

$$a'' + b_{het} = 3.02$$

which is obtained by substituting a = -2.12found for polyenes and $a' + b_{het}/2 = 0.45$ for polyene- α -aldehydes (see equation 7) in equation 8. From these data and the observed values, the

(2) $-CHO \rightarrow -COR$ or -COOH cannot be regarded as simple auxochromic substitution, such as $=CH \rightarrow =CR \rightarrow$, because in the former auxochromic substitution occurs not in the homochromophore, but in the heterochromophore. As there are insufficient data for the exact computation of parameters A' and B' (or A'' and B''), we assume that the homoconjugation method is applicable to these cases and that the change occurs in N.

(3) The method of calculation of N and λ_{max} is illustrated in part II.

TABLE II

Absorption Maxima of Polyenes with Carbonyl or Carboxyl Groups at α- and ω-Positions

		Su	bst.	and ire ^a			λmax	. mµ
No.	Compound	n	R	Ac	N	Solv.0	Obsd. ¢	Calcd.
1	Apo-3,12-lycopenedial	8	4	0	8.4	P.e.	452	453
2	Apo-2,12-lycopenedial	9	4	0	9.4	P.e.	468	468
3	β-Carotenone aldehyde	7	3	0	7,3	Hex.	431	434
4	4-Hydroxy-β-caroten-							
	one aldehyde	7	3	0	7.3	Hex.	433	434
5	Capsylaldehyde	7	3	0	7.3	Hex.	431	434
6	Capsanthylal	8	4	0	8.4	P.e.	452	453
7	Apo-2-norbixinal							
	methyl ester	7	3	1	7.0	P.e.	424	428
8	Apo-1-norbixinal							
	methyl ester	8	4	1	8.1	P.e.	445	448
9	β -Carotenone	9	4	0	9.4	Hex.	4 66	467.5
10	Physallienone	9	4	0	9.4	P.e.	464	467.5
11	Capsorubin	9	4	0	9.4	L.1.	474	467.5
12	Capsorubin dipalmitate	9	4	0	9.4	Hex.	474	467.5
13	Capsanthinone	9	4	0	9.4	Hex.	472	467.5
14	Azafrinone	7	3	1	7.0	L.1.	429	430
15	Methylazafrinone	7	3	1	7.0	L.1.	429	430
16	Crocetin	7	4	2	6.8	L.1.	424.5	424.5
17	Crocetin dimethyl ester	7	4	2	6.8	L.1.	424.5	424.5
18	Methylbixin	9	4	2	8.8	Hex.	450	459

^a See a, Table I. ^b See b, Table I. ^c Experimental data from P. Karrer and E. Jucker, "Carotenoids," Elsevier Publishing Co., Inc., Houston, Texas, 1950.

parameter B'' was calculated to be 34.67. Thus

 $(\lambda_{\max}^{\text{p.6.}})^2 = (37.69 - 34.67 \times 0.920^N) \times 10^4 \text{ m}\mu^2$ (9)

is the equation for polyene α,ω -dialdehydes (Table II, 1 and 2); the same equation is also applicable to α -keto- ω -aldehydes (II, 3-6) and to α,ω -diketones (II, 9-13). Equation 9 also can be used for α -aldehyde- ω -carboxylic acids (II, 7 and 8), α -keto- ω -carboxylic acids (II, 14 and 15) and α,ω -dicarboxylic acid (II, 16-18), with $N_{\rm acid} = -0.3$ as previously determined.

Osaka, Japan